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A two-scale low-Reynolds number turbulence model
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SUMMARY

In this study, a two-scale low-Reynolds number turbulence model is proposed. The Kolmogorov
turbulence time scale, based on fluid kinematic viscosity and the dissipation rate of turbulent kinetic
energy (n, o), is adopted to address the viscous effects and the rapid increasing of dissipation rate in the
near-wall region. As a wall is approached, the turbulence time scale transits smoothly from a turbulent
kinetic energy based (k, o) scale to a (n, o) scale. The damping functions of the low-Reynolds number
models can thus be simplified and the near-wall turbulence characteristics, such as the o distribution, are
correctly reproduced. The proposed two-scale low-Reynolds number turbulence model is first examined
in detail by predicting a two-dimensional channel flow, and then it is applied to predict a backward-fac-
ing step flow. Numerical results are compared with the direct numerical simulation (DNS) budgets,
experimental data and the model results of Chien, and Lam and Bremhorst respectively. It is proved that
the proposed two-scale model indeed improves the predictions of the turbulent flows considered.
Copyright © 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The advancement of large computers has led to the wide use of higher-order turbulence closure
models to predict turbulent flows. The most popular class includes the k–o type turbulence
models [1] in which the turbulent kinetic energy k and its dissipation rate o are determined
from two partial differential equations (PDEs). Reynolds stresses can be determined either
from Reynolds stress models or from a Boussinesq eddy viscosity model,
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etc. Here nt is the eddy viscosity, defined as nt=CD(k2/o). With k and o available, the
turbulence length scale can then be determined from the relationship k1.5/o based on dimen-
sional analysis, and hence, unlike some simpler mixing length models, artificially introducing
a turbulence length scale is not necessary. These models have been successfully applied in many
engineering applications of high Reynolds number equilibrium turbulent flows [2].

When applying the k–o models to solve wall turbulent flows, certain near-wall modifications
are required in the models since the rigid boundary will exert several different affects on
turbulence [3]. Firstly, a wall will reduce the length scales of the fluctuation and raise the
dissipation rate. Secondly, it will enforce a no-slip condition, thus ensuring that within a
wall-adjacent sub-layer, turbulent stresses are negligible and viscous effects on transport
processes become of vital importance. Thirdly, a wall will also reflect pressure fluctuations,
thereby inhibiting the transfer of turbulence energy into fluctuations normal to the wall. Under
such conditions, the high-Reynolds number turbulence models are no longer valid and cannot
be applied directly to predict the near-wall turbulent flows, unless appropriate near-wall
modifications are adopted.

Wall functions [4] are one of the well-known near-wall modifications. The so-called wall
functions relate surface boundary conditions to points in the fluid away from the boundaries
and thereby avoid the problem of modelling the direct influence of viscosity. The validity of
this procedure is, of course, restricted to situations in which the Reynolds number is
sufficiently high for the viscous effects to be unimportant or where universal wall functions are
well established. As a result, the wall functions are not very suitable for turbulent flows with
such complexities as adverse pressure gradient, streamline curvature or complex three-dimen-
sional flows and so forth.

Predicting turbulent wall shear flows directly from a wall is attractive from a practical
standing point [5]. Since the momentum and continuity equations are solved up to the wall, it
provides the means to include the complexities of complex turbulent flows without invoking
wall functions. Over the past years, many suggestions have been made for both Reynolds stress
models and eddy–viscosity models to extend their use at low Reynolds numbers and to
describe the flow close to a solid wall. The extensions all involve modifying the viscous
diffusion, dissipation and, for Reynolds stress models, the pressure redistribution [3]. Damping
functions and ad hoc modifications are required to modify their near-wall behaviour.

The necessity of employing different kinds of near-wall modifications is due to the fact that
most of the near-wall turbulence models in use are derived based on the concept of single
turbulence scale. For instance, the length and time scales of turbulence are characterized by k
and o only. The turbulence scales determined from (k, o) are known to characterize the energy
containing large turbulent eddies. They are not the appropriate scales to describe the
dissipation dominated near-wall turbulence. Therefore, various forms of near-wall modifica-
tions have been proposed, however, without producing consistent near-wall predictions.
Reviews of near-wall turbulence models can be found in Patel et al. [6] and So et al. [7].

An alternative and physically more realistic way to model the near-wall turbulence is to
introduce the Kolmogorov turbulence scale in the dissipation dominated near-wall region [8,9].
The Kolmogorov scale, based on (o, n), provides turbulence models with a proper lower bound
as the wall is approached, since none of them will become zero on the wall. Employing the
Kolmogorov scale in a low-Reynolds number turbulence model at least properly addresses the
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first two wall effects mentioned above, namely, the viscous effects and the rapid increasing of
turbulence dissipation. It is thus expected that adopting both the (k, o) and (o, n) scales in the
same turbulence model, allowing them to transit smoothly from the former to the latter one,
will improve the model performance. Furthermore, damping functions or ad hoc modifications
may also be simplified with the appropriate near-wall turbulence scale adopted. A two-scale
low-Reynolds number turbulence model is thus proposed. The proposed model is first
examined by predicting a two-dimensional turbulent channel flow [10] and then it is applied to
predict a backward-facing step flow [11]. Numerical results are compared in detail with the
direct numerical simulation (DNS) budgets, experimental data and the model results of Chien
[12] and Lam and Bremhorst [13], the better ones evaluated by Patel et al. [6]

2. NEAR-WALL TURBULENCE MODELS

The steady, incompressible Navier–Stokes equations for turbulent flow can be written as
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The parameters Uj and uj represents mean and fluctuating velocities in the j-direction
respectively, P is the static pressure, r is the fluid density, n is the fluid kinematic viscosity, and
the overbarred quantities uiuj are the Reynolds stresses. Since there are more unknowns than
equations available the problem is not closed. Therefore, it is necessary to introduce k, o or
even the Reynolds stress uiuj, into the transport equations to meet the requirement that the
number of unknowns is equal to the number of equations available and close the problem.

For the low-Reynolds number, eddy–viscosity models, Reynolds stresses are determined
from the algebraic Boussinesq eddy–viscosity model. A general form of the corresponding
transport equations can be written as
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Here D is chosen such that the numerical boundary condition is ō=0 at the wall. The
additional empirical term E is introduced to increase the growth of o with wall distance if f1 is
set to be unity. T is the time scale, defined as

T=max
�k

o
, CT

�n

o

�1/2�
for the proposed two-scale model, with CT=6. The coefficient CT is adopted directly from the
work of Durbin [9] by reference to DNS data, and is shown to produce the correct near-wall
o distribution in this study. The time scale becomes k/o far from the boundaries. Near a wall,
the time scale becomes the Kolmogorov dissipation scale CT(n/o)1/2, which is a suitable lower
bound on T. For the low-Reynolds number models of Chien [12] and Lam and Bremhorst [13],
T is kept to be k/o all the way down to the wall. The parameter Pk is the production term,

Pk= −uiuj

(Ui

(Xj

Wall effects are approximated using damping functions fm, f1 and f2. Wall damping functions,
boundary conditions and model coefficients for the proposed two-scale model and the model
of Chien [12] and Lam and Bremhorst [13] are listed in Table I. It should be pointed out that
in the proposed two-scale model, f1 is expressed in terms of the ratio of turbulence production
over dissipation. It is not a damping function but a modification to the Co1 model coefficient.
Since f2 equals unity, fm is the only damping function required in the proposed model.

Some dimensionless parameters appearing in Table I are defined as
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Note also that the damping function fm of Lam and Bremhorst’s model [13] is expressed in
terms of Ry and RT, which are defined as a function of k. Since turbulent kinetic energy k is
always positive, Ry and RT are always positive and will not alter their sign when reverse flow
occurs. To preserve such an advantage, the damping functions adopted in the proposed
two-scale model also include these parameters.

3. PREDICTION OF FULLY DEVELOPED TURBULENT CHANNEL FLOW

DNS of turbulent channel flows provide a complete database to develop and test turbulence
models. To investigate in detail the performance of the near-wall turbulence models considered
in this study, the low-Reynolds number DNS channel flow of Kim et al. [10] is solved directly
from the wall. Both the mean quantities and the budgets of each modelling term of the k and
o transport equations are compared. The simulated flow fields are for a channel flow at a
Reynolds number Ret=utd/n=180 based on n, the wall shear velocity ut and the channel
half-width d. This corresponds to a Reynolds number Re=Ucd/n=3200 based on the mean
centreline velocity Uc and channel half-width d.
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Table I. Low-Reynolds number models

(a) Damping functions and near-wall modifications
fm f1 f2Authors E
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(b) Model coefficients and boundary conditions
D ow—B.C. CD CkAuthors Co Co1 Co2 Co3
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(2k
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2n
k

y2 0 0.09Chien 0.09 0.07 1.35 1.8

For a two-dimensional, fully developed turbulent flow, the Navier–Stokes equations,
incorporated with the low-Reynolds number turbulence model, can be written as
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Note that in Equation (8), the Kolmogorov time scale has no effect for the production term
Co1, since the reciprocal of the time scale is eliminated by the time scale of the eddy viscosity.

For a fully developed flow, D/Dt=0, the above equations are simplified to ordinary
differential equations (ODEs). From Equation (6) it is known that given ut, the mean velocity
and all the turbulence quantities can be found from integrating Equations (6)–(8). The value
of ut is found to be 0.05625 from the conditions that Ret=utd/n=180 and Re=Ucd/n=
3200. Since the flow is symmetric to its centreline, the symmetrical boundary conditions,

do

dy
=

dk
dy

are applied at y=d. At y=0, the wall conditions are U=k=0. The wall conditions of o for
different models are listed in Table I(b).

Sixty non-uniform nodes are distributed within the channel half-width, and transport
equations are discretized using finite volume method (FVM) [14]. Specifying appropriate
boundary conditions, all the transport differential equations can be solved in a similar way. To
check if the solution has reached grid independence, 40 and 80 non-uniform nodes are also
adopted to solve the DNS channel flow using the two-scale model. It is found that, for such
a low-Reynolds number turbulent flow, the solutions of 40 and 80 nodes are almost identical
in the case when the near-wall grids are properly distributed. Therefore, a compromise of 60
nodes is used throughout the study, with 14 nodes within y+55 and 24 nodes within
55y+540. The convergence criterion is specified as the relative error of all variables being
smaller than 1×10−5. Different time step and relaxation factors are adopted for different
models. Discussions of numerical convergence are not presented here since it is not the purpose
of the present study.

4. COMPARING WITH THE DNS BUDGETS

The major difference between the proposed two-scale model and the other two low-Reynolds
number models is on the determination of turbulence time scale. Figure 1 compares the time
scale distribution for k/o and the Kolmogorov time scale CT
n/o with CT=6, over the range
05y+540. This figure shows that the cross of time scale occurs in the viscous sub-layer, at
y+$7. Different CT values, 35CT512, were also tested, which resulted in only a little
difference of the near-wall time scale variations. Therefore, the predicted results are considered
insensitive to the different CT values. It should also be remarked that the kink at the cross of
the time scale does not have any significant influence, since the difference between the kink and
its linear distribution is small. Besides, when determining the eddy viscosity, the time scale is
multiplied by fm, the kink falls within the range where fmT is approximately equal to zero, as
shown in Figure 1.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 695–710



A TWO-SCALE LOW-Re TURBULENCE MODEL 701

Figure 1. Time scale distribution.

Specifying the shear velocity ut=0.05625, the integrated −u6+ distribution is shown in
Figure 2. The symbol ‘�’ represents the DNS data picked from Kim et al. [10]. Model results
are represented by the different symbols of lines shown in the figure. It is found that the
proposed two-scale model predicts the overall best Reynolds stress distribution. The other two
models predict either a better near-wall or peak Reynolds stress distribution, while deviating
from the DNS results for the other parts.

Equation (6) indicates that, with ut specified, the velocity distribution of a fully developed
flow is mainly influenced by the Reynolds stress −u6. If the adopted turbulence model can not
predict correctly the −u6 distribution, the integrated mean velocity profile will also deviates
from the DNS results. This is found to be true by comparing the model results with the DNS
data. As shown in Figure 3, only the mean velocity profile obtained from the two-scale model
fits precisely with the DNS results, the other two velocity distributions contain certain
discrepancies. Figure 4, the log-law distribution of mean velocities, shows the same tendency.
Note that mean velocities are integrated by specifying constant wall shear stress; the near-wall
velocities predicted from different turbulence models are almost identical. However, away from
the wall the velocity profiles are diverse.

Figure 2. Reynolds stress distribution.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 695–710
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Figure 3. Mean velocity distribution.

Figure 4. Log-law distribution of velocity.

To evaluate turbulence models in detail, the budget of each modelling term of the k, o

transport equations are also examined. Figure 5 presents the modelled k budget compared with
the DNS results of exact turbulent kinetic energy equation. For the turbulent diffusion,
((/(y)[CkTk((k/(y)] and the production Pk= −u6((U/(y) terms, all the models can predict
correctly the trend as the DNS results, even though their peak values and peak positions have
some differences, as shown in Figure 5(a) and (b) respectively. As for the viscous diffusion
((/(y)[n((k/(y)] and dissipation budget of k, Figure 5(c) and (d) show that only the two-scale
model predicts correctly the near-wall distribution with its peak value on the wall. For the
dissipation budget, all the other models predict only a single peak, located close to y+:16
with their values in between the two peaks of the DNS results.

It should be remarked that several different o wall boundary conditions have been tested
with the two-scale model. However, only the form

ow=2n
�(
k
(y

�2
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Figure 5. Budgets of turbulent kinetic energy. (a) Turbulent diffusion; (b) production; (c) viscous
diffusion; (d) dissipation.

gives the correct wall value and the proper coefficient for the linear term as well, which in turn
renders the correct near-wall o distribution. Some respective proponents also manifest that such
an o distribution can also be reproduced by using complex damping functions and ad hoc
near-wall modifications [15,16]. However, too many ad hoc modifications generally diminish
the flexibility of the model application and sometimes will also bring about the numerical
stability problem. Since introducing the Kolmogorov scale simplifies, but not sophisticates, the
near-wall turbulence modelling, it seems to be the better way as improving the near-wall
turbulence prediction is considered.

It should also be pointed out that in the k equation only the turbulent diffusion term
requires a model and as shown in Figure 5(a) the differences between modelled turbulent
diffusion and the DNS results are small. The k equation is thus considered to be relatively
accurate so that prediction of k directly from wall can be achieved without any modification.
No evidence indicates that the main difficulty of turbulence predictions is arisen from the
turbulent diffusion model.

Figure 6 presents the budgets of the modelled o equation. According to Mansour et al. [17],
the viscous diffusion and destruction terms of the o equation are better modelled together.
Figure 6(a) compares the summation of these two terms,

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 695–710
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Figure 6. Budgets of kinetic energy dissipation. (a) Viscous diffusion+destruction; (b) production;
(c) turbulent diffusion.
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versus the production terms of the exact equation. Obviously, none of the models predicts the
correct results. However, it is found that the discrepancies between model results and DNS
data of these two figures are similar in magnitude but opposite in sign. Summing these terms
together, the discrepancies will be eliminated by each other and the model results would fit
much better to the DNS data. Their accuracy can even be evaluated from examining the
distribution of turbulent diffusion,
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For a fully developed flow, the convective terms vanish. The summation of viscous diffusion,
turbulent diffusion, production and destruction terms equals zero, or equivalently the summa-
tion of viscous diffusion, production and destruction is equal to the negative of turbulent
diffusion. Since the magnitude of turbulent diffusion is one order smaller than the magnitude
of the other modelling terms, as shown in Figure 6(c), the overall prediction accuracy of the
o equation is much better than its individual modelling term. This may explain why, even using
such an inaccurately modelled o equation, one can still predict satisfactorily some simple
turbulent flows.

The inconsistency of the model results with the DNS budgets may imply that the modelling
of the o equation is incomplete. The o equation is known to be the most inaccurately modelled
equation in the k–o type turbulence models since each term on the right-hand side of its exact
transport equation requires a model [4]. What is worse is the physical meaning of some of
those terms is not clearly understood, hence they were simply dropped or simplified when
modelling the o equation. Adopting the Kolmogorov scale or even using higher-order Reynolds
stress turbulence models [18] will not improve too much the performance of each individual
modelling term. Reconsidering the modelling philosophy of the o equation seems necessary.

Equations (6)–(8) show that, with k, o transport equations fixed in their two-scale form, and
wall shear stress specified, the integrated mean velocity is mainly influenced by the Reynolds
stress −u6 distribution, or equivalently, the fm damping function. Several fm damping functions
[4] were tested. It is found that only the fm of Lam and Bremhorst’s model [13] does not require
a modification and renders the best results directly. Since fm is the only damping function
required in the proposed model, if different forms of the fm function were modified to yield the
same mean velocity distribution, all the predicted turbulence transport quantities, and their
budgets will be almost identical. Figure 7 demonstrates one such example that, by modifying
the fm from a two-layer model [19] to be

fm=
�

1−exp
�

−
Ry

70
�n1.75

Figure 7. Results obtained from two different damping functions. (a) Mean velocity; (b) dissipation.
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the predicted results from two different damping functions are consistent and almost identical.
Using such characteristics, a simpler form of the fm damping function can be derived to ease
the numerical computation without deteriorating the prediction accuracy.

5. PREDICTION OF BACKWARD-FACING STEP FLOW

The backward-facing step flow is a fundamental configuration of internal flows and has been
extensively studied. The flow separates at the step, reattaches at downstream and then
recirculates behind the step, which provides turbulence models with additional test domain.
Prediction of such a flow can thus enable one to examine the model capability in predicting not
only the distribution of turbulence transport quantities but also the mean velocity distribution.
However, when reverse flow occurs, adopting a model whose damping function relates directly
to wall shear stress, such as the model of Chien [12], is not appropriate. Hence, only the
proposed two-scale model and the model of Lam and Bremhorst [13] are adopted here.

The configuration of the flow considered is the same as that of the experimental set-up of
Smyth [11], as shown in Figure 8. The dimensionless downstream channel half-height is W=1,
the upstream channel half-height is H=2

3 and the step height is 1
3. W is chosen as the reference

length scale and the mean inlet velocity Um is the reference velocity scale. Based on these
scales, the Reynolds number is 30210 and the expansion ratio, defined as W/H, is 1.5. The
turbulent flow is steady and the separation is symmetric. Therefore, only the upper half of the
backward-facing step channel flow is considered in this numerical calculation. The distance
between the inlet and the step is taken to be 1.5 and the outlet is 12 units downstream from
the step. Cartesian co-ordinates are used with the X-axis directed along the centreline and the
origin is located at the step.

The inlet profiles of U, k, o were not provided by Smyth’s experiment [11]. They are
determined empirically such that the predicted results match closely with Smyth’s experimental
data [11] of U at the step entrance, X=0. Several inlet profiles were examined. The following
profiles are selected for all the calculations:

Ui=1.17(1−Y)1/7

ki=0.15(0.023+0.19Y−0.799Y2+1.335Y3)

o=1.2ki
3/2

Figure 8. Configuration of backward-facing step flow.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 695–710
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For the rest of the boundaries, wall, symmetric and fully developed outlet conditions are
specified.

A grid independence study is performed first. Three different node distributions, namely
68×62, 102×62 and 102×89 nodes, are adopted to predict the backward-facing step flow
using Lam and Bremhorst’s model [13]. For the longitudinal, 68 nodes distribution, the grid
spacing ranges from 0.01 to 0.4, while for the 102 nodes distribution, it is from 0.006 to 0.2.
In the vertical direction, the grid spacing is from 0.002 to 0.07 and 0.0012 to 0.05 for the 62
and 89 nodes distribution respectively. The convergence criterion is specified the same as that
of the DNS channel flow. However, different time steps and relaxation factors are adopted at
different time marching stages. Discussions of numerical convergence are not presented since
it is not the purpose of the present study. Figure 9 shows some of the predicted profiles. It is
found that if the nodes are properly distributed in the critical region, such as the separation
zone where flow characteristics are examined, the predicted results are almost identical and
grid independence is reached. Hence, in the following discussion, only the solutions obtained
from the 102×89 nodes are presented.

The velocity profile at the step entrance is checked first. Figure 10 shows that both
turbulence models predict fairly close U profiles at the step entrance, and thus comparisons at
downstream sections are meaningful. Note also that the advantage of adopting the near-wall
Kolmogorov scale is clearly manifested in this figure. The two-scale model predicts a smaller
near-wall velocity distribution, which fits closer to the experimental data.

Figure 11 compares the shear stress distribution along the bottom, starting from the corner
of the step to the exit, of the channel. The positive shear stress appeared on the step corner
implying that both models predict a tiny, secondary separation bubble right on the step corner.
Note also that adopting the Kolmogorov scale in the near-wall region will increase the wall
shear stresses, which in turn will shorten the predicted reattachment length of the separation
flow. This is further confirmed in what is presented in the following. Comparisons of mean
velocity U, turbulent kinetic energy k and Reynolds stress (u2)1/2 at the cross-section X=1.2,

Figure 9. Grid independence examination. (a) Velocity profile at X=1.2; (b) Reynolds stress 
u2 at
X=1.2.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 695–710
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Figure 10. Velocity profile at step entrance.

Figure 11. Wall shear stress distribution.

close to the end of the recirculation zone, are presented in Figure 12. Obviously, the two-scale
model predicts better results. Figure 12(a) shows that the predicted reverse flow of the
two-scale model matches closely with the experimental data. Checking the computational
results, it is found that the predicted reattachment length extends to X=1.64 and 1.77 for the
two-scale model and the model of Lam and Bremhorst [13] respectively, while the experiments
showed that X=1.5. For the k and (u2)1/2 distributions, the two-scale model also renders
better results than the model of Lam and Bremhorst [13]. However, certain discrepancies are
still observed with experimental data, which is probably due to the limitations established in
the eddy–viscosity type turbulence models that Reynolds stresses are approximated by the
simple eddy–viscosity model. To further improve the prediction accuracy, adopting higher-
order closure turbulence models, such as the second-order closure turbulence models [2], is
required.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 695–710
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Figure 12. Prediction of backward-facing step flow. (a) Mean velocity at X=1.2; (b) turbulent kinetic
energy; (c) Reynolds stress 
u2 at X=1.2.

6. CONCLUSIONS

Currently, there are many low-Reynolds number turbulence models available. However, the
development of those models tends to sophisticate the damping functions and ad hoc
modifications, which in turn deteriorates numerical stability and hampers the model applicabil-
ity. A better way to improve the model performance would be simplifying the model form by
introducing a physically realistic turbulence scale in the near-wall region. This is accomplished
in the proposed two-scale low-Reynolds number turbulence model.

Adopting the second, Kolmogorov, turbulence scale in the near-wall region at least properly
addresses two of the wall effects, namely the viscous effects and the rapid increasing of
dissipation rate. In addition, the two-scale model simplifies, but not sophisticates, the damping
functions and ad hoc modifications. Only the fm damping function is required in the proposed
model. With appropriate boundary conditions specified, some related near-wall turbulence
characteristics, such as the viscous diffusion, dissipation or velocity distributions, can be
correctly reproduced. Sensitivity tests show that varying the time scale model coefficient, CT,
will not have a significant influence on the predicted results. Furthermore, if different forms of
the fm function were modified to yield the same mean velocity distribution, all the predicted

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 695–710



S.-Y. JAW AND R. R. HWANG710

turbulence transport quantities and their budgets will be almost identical. Using such charac-
teristics, a simpler form of the fm damping function can be derived to ease the numerical
computation without deteriorating the prediction accuracy.

The proposed two-scale turbulence model is first examined in detail by predicting a
two-dimensional channel flow, and then applied to predict a backward-facing step flow.
Numerical results are compared with the DNS budgets, experimental data and the model
results of Chien [12] and Lam and Bremhorst [13] respectively. It is concluded that the
two-scale low-Reynolds number turbulence model indeed improves the prediction of the
turbulent flows considered.
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